Entropy-Based Independence Test

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy-Based Independence Test

This paper presents a new test of independence (linear and nonlinear) among distributions, based on the entropy of Shannon. The main advantages of the presented approach are the fact that this measure does not need to assume any type of theoretical probability distribution and has the ability to capture the linear and nonlinear dependencies, without requiring the specification of any kind of de...

متن کامل

A Non-Parametric Independence Test Using Permutation Entropy

In the present paper we construct a new, simple and powerful test for independence by using symbolic dynamics and permutation entropy as a measure of serial dependence. We also give the asymptotic distribution of an affine transformation of the permutation entropy under the null hypothesis of independence. An application to several daily financial time series illustrates our approach.

متن کامل

Rank-based entropy tests for serial independence

In nonparametric tests for serial independence the marginal distribution of the data acts as an infinite dimensional nuisance parameter. The decomposition of joint distributions in terms of a copula density and marginal densities shows that in general empirical marginals carry no information on dependence. It follows that the order of ranks is sufficient for inference, which motivates transform...

متن کامل

Entropy Versus Pairwise Independence

We give lower bounds on the joint entropy of n pairwise independent random variables. We show that if the variables have no dominant value (their min-entropies are bounded away from zero) then this joint entropy grows as Ω(log n). This rate of growth is known to be best possible. If k-wise independence is assumed, we obtain an optimal Ω(k log n) lower bound for not too large k. We also show tha...

متن کامل

A Permutation-Based Kernel Conditional Independence Test

Determining conditional independence (CI) relationships between random variables is a challenging but important task for problems such as Bayesian network learning and causal discovery. We propose a new kernel CI test that uses a single, learned permutation to convert the CI test problem into an easier two-sample test problem. The learned permutation leaves the joint distribution unchanged if a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Dynamics

سال: 2006

ISSN: 0924-090X,1573-269X

DOI: 10.1007/s11071-006-2019-0